PHYSICAL REVIEW E

VOLUME 52, NUMBER 3

SEPTEMBER 1995
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We investigate the synchronization phenomena in a network of neuronal oscillators with finite
storage capacity. The effective Hamiltonian describing the stationary state of the system is analyzed
via the replica method, to yield a phase diagram in the three-dimensional parameter space. The
system is found to display a variety of behaviors including first-order and second-order transitions

as well as reentrance.
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I. INTRODUCTION

The oscillatory behaviors of neurons observed in real
biological systems have been suggested to play important
roles in various types of information processing, such as
sensory segmentation, binding, and motor control [1-3].
In particular, the oscillatory activity in the primary vi-
sual cortex of a cat indeed appears to support the view
that the oscillation could be crucial to the feature linking
[4]. Here, one of the remarkable features of an assembly
of oscillators is the emergence of a coherent motion over a
relatively long distance, which is called collective synchro-
nization [5]. The temporal synchronization in the cortex
suggests that the processing of information is coopera-
tive and involves neurons with different states. Through
analytical and numerical studies of oscillatory networks,
many insights have been obtained into this coherent be-
havior of diverse biological organisms [6]. In those stud-
ies, the individual neuron is usually modeled as a self-
oscillatory functional unit under suitable conditions.

Recently, Arenas and Vincente studied a network of
coupled neuronal oscillators and pointed out that phase
locking can serve as a mechanism for memory storage in
the system, which is destroyed if the distribution of nat-
ural frequencies is sufficiently broad [7]. In the study, the
state of each neuron is described by the phase, leading
to the well-known phase model. The resulting Arenas-
Vincente (AV) model has similarity to the Q-state clock
model of neural networks [8] in the limit @ — co. The
results of the two models agree with each other in the
proper limit. However, both models are limited to spe-
cial cases. The AV model is restricted to the low loading
limit where only a finite number of patterns are stored;
the Q-state model does not include the effects of the dis-
tribution of natural frequencies.

In this paper, we generalize the AV model to the case
of finite storage capacity and obtain the phase diagram in
the three-dimensional parameter space, which reproduces
the results of the existing models in the appropriate lim-
its. The system can serve as an attractor neural network,
which stores information through mutual phase locking
and exhibits interesting behaviors including first-order
and second-order transitions as well as reentrance. When
all the oscillators are identical, the network is found to
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exhibit behaviors qualitatively the same as those of the
Q-state neural networks and the Hopfield model. Thus
phase locking is destroyed when the storage exceeds the
critical value. The appearance of a glassy phase through
a continuous transition is also pointed out; here the dis-
tribution of natural frequencies makes the glass transition
discontinuous.

The paper is organized as follows. In Sec. II we derive
the effective Hamiltonian from the Fokker-Planck equa-
tion governing the time evolution of the system and use
the replica method to obtain the self-consistency equa-
tions for the order parameters. The numerical study of
the self-consistency equations is presented in Sec. III. The
critical value of the storage capacity, beyond which phase
locking does not persist, is found and the correspond-
ing transition line separating the synchronized and the
desynchronized phases is calculated. Interesting reen-
trant behavior is also revealed in the resulting phase dia-
gram obtained in the three-dimensional parameter space.
Further, the existence of a glassy phase is pointed out,
which appears via a continuous or a discontinuous transi-
tion according to the distribution of natural frequencies.
Finally, Sec. IV gives a brief discussion as well as a sum-
mary of the main result.

II. EFFECTIVE HAMILTONIAN
AND EQUATIONS OF STATES

We follow Ref. [7] and begin with the Langevin equa-
tion governing the dynamics of the system

do;
dt

N
=w;i— Y Jijsin(0; — 6;) + %i(2), (1)
Jj=1

where 6; and w; represent the phase and the natural fre-
quency of the ith oscillator, respectively, J;; is the cou-
pling matrix, IV is the size of the population, and ~;(t)’s
are independent white noises with zero mean and corre-
lation

(vi(t)v; (') = 2Ds;;6(t — t'),

Without loss of generality, we set the mean natural fre-

D >o. (2)
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quency equal to zero and assume that w;’s are distributed
according to a Gaussian distribution with the variance o.
The synaptic couplings contain information to be stored
and are constructed as

aN

Jij = %2005(65 - &), ¢elo,2n]. (3)

p=1

Hereafter, we set J = 1 for simplicity and make all the
parameters dimensionless. Namely, the time ¢ is mea-
sured in units of 1/J.

Our goal is to determine the stationary properties of
Eq. (1) for finite . For this purpose, a convenient way is
to introduce the appropriate probability density and con-
sider the Fokker-Planck equation corresponding to the
Langevin equation (1). Here the simple case of @ = 0,
together with the help of order parameters measuring the
correlations between the state of the system and the pat-
terns to be stored, allows us to reduce Eq. (1) to the
Fokker-Planck equation for the one-oscillator probabil-
ity density. Unfortunately, however, this simple reduc-
tion does not work for finite a due to the lack of the
self-averaging property. We thus resort to the Fokker-
Planck equation for the N-oscillator probability density

P({ol}’ {wi}’ & t):

oP o 92
E——Z[éo—ihi~D5—@]P, (4)

K

with
— ) Jijsin(6; — 6;),
J

which leads to a stationary solution P(({6;})
exp(A[f]) with action

Z w;0; + Z J;j cos(8; — 6;)

i<j

It is obvious that this solution has the form of a Gibbs
measure with the effective Hamiltonian

1 nE
sl
2 2
+ [Z cos(f; + &) Zsin(ei — 5:‘)]

+
i

+ [Z sin(6; + g;‘)] } ~2 Z wibi, (5)

i

H=—

at temperature T = 2D. In principle, the proper so-
lution should be periodic in 6: P(8) = P(0 + 2m) or
A(0) = A(0 + 27), and the above solution does not ap-
pear to be adequate for describing the dynamics of the
system governed by Eq. (1), which involves variations
of 0 larger than 2n«. Similar problems arise in super-
conducting arrays driven by external currents [9], where
the action was regarded as a periodic function with pe-

riod 2nm (n — oo). Then it was pointed out that the
standard Villain approximation, which gives an accurate
description at low temperatures, restores the correct pe-
riodicity and yields results independent of n. We thus
follow Ref. [9] and regard H in Eq. (5) as the effective
Hamiltonian of the system, with the period 2nw. Here,
similarly to Ref. [9], it can be seen that the corresponding
free energy is independent of n. Therefore we take the
integration interval of 8 to be from —7 to w. The free
energy functional can then be obtained via the replica
method in the thermodynamic limit N — oo.

The replica method allows us to write the partition
function in the form of the multiple integral [10]

2anN n aN
Z" = Z ( ) / 1‘[ H dA*dA*dB*dB*
[au] a=1pu=1

X H X, exp (2,3 E wiﬂf) , (6)
a,pn i

where 8 = T!
for

is the inverse temperature and X, stands

X, = exp{—g ; [(Ag)z + (A¥)2 + (B¥)? + (B*)?
—2A" cos(0¢ — &¥) — 2;1';‘ cos(0¢ + &)

—2B*sin(62 — £*) — 2B*sin(6¢ + {“)] }

For simplicity, we consider the case that only the first
pattern (u = 1) is condensed, while others have negligible

overlap with the state of the system: A¥, Z{,‘, B, l~?{,‘ <1
for p # 1. Hereafter, the index u = 1 will be omitted.
After taking the average over noncondensed patterns [10],
we obtain the free energy functional per oscillator

f= 71‘1_%7\; [1 - <—) / H dmy [ dgapdras
a<f

% exp(—,@N@)] , (7)

with

’I‘rl A+

=3 Z(ma)z E Tapdap
a<ﬁ

-% ln<<z exp{ﬂ > [Aacos(e® — &)
o] a=1
+ A, cos(8% + £) + Basin(6® — £) + B, sin(6° + E)]

+1i Z TagBapg + 20w Z 9“}>> s
w,€

a<lpfB
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where gog’s and 7,g’s have been introduced for the inte-
gral representation of the § functions, the matrix element

of A is given by Aqg = (1 — B3/2)8ap — Bgas, and { Dw,e

denotes the average over the quenched variables w and
§. Further, B,g’s have been defined so as to satisfy the

J

= (A* A*
m* = (Al,Az,...,

in the vector notation.
The mean-field equations follow from the saddle-point
conditions and take the forms

Ag = (((cos(6% — €)) Ve »
Ay = (((cos(6% +€)) Ve »
B, = (((sin(6 — £)) N ¢ »
Ba = ((sin(6% + €)) N ¢ »
9ap = (N (Bag) »w,g )

Fap = = <<2 mgm;>> : )
pu>1 w,é

where 7og = irag/aNB? and (O(0)) stands for the aver-
age with respect to the action £([6]),

3 0(6)e<(8)

(6]
(©00) = =z -
(6]

with the action
L@ n=83" [A,, cos(8° — £) + A, cos(6° + £)

+B,sin(6° — €) + B, sin(6° + 5)]
+1 Z TagBag + 20w Z 6°.

a<f

The order parameters 4, and B, measure the correla-
tion between the state of the system and the pattern
(1 = 1), while Xa and ﬁu are irrelevant correlations and
set equal to zero. Recalling the 27 periodicity of &, we
set A, = B, = m under the replica-symmetric ansatz
together with gog = q and 7o3 = 7.

The free energy per oscillator is then expressed in
terms of the replica-symmetric order parameters

_1 g 2o li-Ba-
f= 3 TR gt g R L 50 o)
+250 01— g)

——% /Dz1 Dz3 Dz3 {(In Tr(g) exp(K cos 8

+ Lsin6 + M0)),, (10)

where K, L, and M have been introduced for simplicity

AL 2B A u npe
Ah ALY AY, .. AR BY,BY, ..., BY,

relation
N
X, = exp —ﬂT > (Sap — BBag)mimy | (8)
a,B
where

E;‘,E;,...,ﬁg)

K = B(mcos€ + Var z;),
L = B(msiné + Var 23),
M = 2,6\/523

and [ Dz denotes the average over the normalized Gaus-
sian variable z. The trace over 6 can be easily performed
with the help of the Fourier transformation in the com-
pact interval [—, 7] since the constant term is integrated
to zero upon the Gaussian average over zz. This leads
to the saddle-point equations for order parameters in the
form

. /Dn D2y Dz <<I’(:c)[K (;oIs(i )+ Lsin{] >>€ ,

1—q=/Dz1Dz2Dz3

I'z)  I"(z) [I'(x)]?
g <<xf<w) i - 7)) >>£’
= 1 - (11)
[1-B(1-4q)/2]

where we have defined

I(z) = E

n=—oo

(=) m?
M2+n2 (@),

with the modified Bessel function of the first kind I,
z = VK2 + L2, and I'(z) = 8I(z)/0z, etc. The order
parameter m plays the role of the mean overlap while ¢
and r correspond to the Edward-Anderson order param-
eter and the mean square random overlap, respectively.

III. PHASE BOUNDARIES

We now examine the numerical solutions of Egs. (11)
for several simple cases. We first consider the zero storage
limit (a = 0). In this limit, Eqs. (11) reduce to the simple
form

m = / Dz LB "(mﬁ) = f(mB), (12)

which allows a nontrivial solution for T' < f’(0). Since
the nontrivial solution m # 0 implies the appearance of
correlation or synchronization in the system, the phase
boundary separating the synchronized and the desyn-
chronized phases on the (o,T) plane is described by
T. = f'(0), which in turn leads to
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FIG. 1. Detailed phase boundary on the (o,T) plane, dis-
playing reentrance for small o.

2z+/0 = g - \/ga:ez”zerfc(\/iw)

_3 ; z? [1 - \/gze‘”z/zerfc(x/\/i)]

= g(x),

(13)

with z = T./24/o. For the given value of o, the solution
of Eq. (13) can be found numerically, giving the transi-
tion temperature T, as a function of 0. Alternatively, at a
given temperature the system may be considered to pos-
sess the critical value of o, beyond which no synchroniza-
tion appears. At zero temperature, the critical value of
o is determined by the equation 2,/5. = ¢'(0) = /7/8,
which yields 0. = 7/32. The resulting phase boundary
exhibits interesting reentrance phenomena in the small o
region, the detail of which is shown in Fig. 1. Namely,
there exists a temperature range in which the system un-
dergoes double transitions as o is decreased: from the
desynchronized phase to the synchronized one and to the
desynchronized one again. Such reentrance implies that
small nonuniformity in the natural frequencies helps the
network to resist against external noises. It is expected
that the reentrance becomes prominent as the storage o
is increased, although this cannot be shown explicitly due
to the difficulty in the numerical work for finite a. The
phase boundary on the whole (0,T) plane is shown on
the a = 0 plane of Fig. 2.

We next consider the case that all the neuronal oscilla-
tors are identical (o = 0), which falls in with the Q-state
clock model in the limit @ — oco. The corresponding
phase boundary on the (a,T) plane, which is obtained
from Eq. (11), indeed coincides with Fig. 5 of Ref. [8], ex-
cept for the difference in the scale of a by a factor 2. (See
the o0 = 0 plane of the phase diagram shown in Fig. 2.)
This difference originates from the fact that the Q-state
clock model considers only the terms ; — £, which is in
contrast with our model including both the terms 6; + £
and 6; — £!. The critical capacity a. = 0.0189 at T' = 0
obtained here thus agrees well with the result a, = 0.038
of Ref. [8].
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FIG. 2. Phase diagram in the (o, o, T') space.

The zero temperature limit can also be investigated
for arbitrary values of @ and o. At zero temperature, the
direct expansion of Egs. (11) fails because the arguments
of the modified Bessel functions are divergent in all or-
ders. Instead, we adopt the spin-wave approximation,
which should be valid at zero temperature. Naively, we
may expand cos up to second order in 6, which yields,
at a = 0, the critical value o. ~ 0.074; this is signifi-
cantly smaller than the exact value obtained previously.
We thus take into account the change of minimum due
to the linear term and consider the expansion about the
minimum of the washboard-type potential [9]

exp(v/ K2 + L2 cos§ + M0) = exp [I? cos(8 — 00)]

zepr? [1 - %(9—00)2] ,

where 6, =  sin}(M/VKZ+L?) and K
= VvVK? 4 L2cosfp. This approximation gives the criti-
cal value o, ~ 0.098 162 at o = 0, which shows excellent
agreement with the exact value 7/32. We thus use this
accurate approximation to obtain the phase boundary on
the (0,a) plane. Figure 2 shows the overall phase dia-
gram in the three-dimensional (o, a, T) space, indicating
the surface separating the synchronized and unsynchro-
nized phases.

Finally, we consider the possibility of the glass transi-
tion, which is, for o = 0, expected to occur above the syn-
chronization transition line. We thus expand Eqs. (11)
in powers of ¢ and r, setting m = o = 0. The glass tran-
sition temperature T, is determined, to leading order, by
the equation

7 2 73%aq 2
o~ — ~ 14
9= ghar = g gray T 0(@), (14)
which yields
Tg l + __,14(1 (15)

It is of interest to note that this expansion fails for finite
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o, which indicates that the glass transition is of first or-
der. The region of the glassy phase presumably grows as
o is increased, although the quantitative investigation is
beyond the scope of this paper.

IV. CONCLUSION

We have studied the synchronization in a network of
neuronal oscillators in the finite storage capacity regime.
The system can be viewed as an attractor neural network
that stores information via mutual phase locking. When
all the oscillators are identical, the network shows behav-
iors qualitatively the same as those of the Q-state neural
networks and the Hopfield model. Phase locking has been
shown to be destroyed if the storage exceeds the critical
value that depends on the temperature. The transition
line separating the synchronized and the desynchronized
phases has been calculated numerically and the continu-
ous transition above the line to the glass phase has been
pointed out. Here the distribution of natural frequencies
makes the glass transition discontinuous.

In particular, the appearance of the reentrant behavior
in the zero storage limit reflects the subtle interplay be-
tween the two kinds of fluctuations present in the system.
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In usual disordered systems such as the Sherrington-
Kirkpatrick spin-glass model [11] and the Hopfield model
[12], the reentrance is in general believed to be character-
istic of the replica-symmetric calculation. Such reentrant
behavior has been found at extremely low temperatures,
where the replica-symmetric solution becomes unphys-
ical and consideration of replica-symmetry breaking is
required; the true replica-symmetry-broken solution re-
moves the reentrance and increases the capacity of the
system. In the system considered here, on the other
hand, the reentrance appears at relatively high temper-
atures even in the zero storage limit, which raises the
possibility that the reentrance here may have a different
origin. For clarification, a detailed investigation of the
stability of the solution and the glass transition should
be performed, together with extensive numerical calcula-
tions in the full (o, a, T') space.
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